Glass foams: formation, transport properties, and heat, mass, and radiation transfer

نویسندگان

  • Andrei G. Fedorov
  • Laurent Pilon
چکیده

Energy efficiency, environmental impact, and quality of the final product in glass manufacturing depend, to a large extent, on foams formed on the surface of the molten glass and of the batch due to entrapment of gas bubbles generated by the batch fusion and refining chemical reactions during the melting process. Hence, understanding the mechanisms of foam formation as well as development of theoretical models for thermophysical and transport properties and heat, mass, and radiation transfer in glass foams are not only a problem of significant fundamental interest but also of tremendous practical impact. In this paper, the review of the current state-of-the-art in our understanding of glass foams is provided, including some of our recent results in modeling the dynamics of the foam growth and its steadystate thickness, prediction of gas diffusion through glass foams, and thermal radiative properties of glass foams. In addition, the new results on simulation of combined conduction and radiation heat transfer in glass foams and radiative transfer in primary (batch) foams are presented and discussed in some detail. The paper also presents practical means available for reducing foaming in glass melting and concludes with the discussion of unresolved problems and summary of the directions for the future work in the area. 2002 Elsevier Science B.V. All rights reserved. PACS: 44.40.þa; 47.55.Dz; 82.70.Rr; 83.70.Hq

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interfacial and Transport Phenomena in Closed-cell Foams

Pilon, Laurent. Ph.D., Purdue University, December, 2002. Interfacial and Transport Phenomena in Closed-Cell Foams. Major Professor: Raymond Viskanta. The present study can be divided in three different parts: (1) foam dynamics, (2) thermal radiation transfer through foams and semitransparent media containing bubbles, and (3) bubble transport in three-dimensional liquid laminar flow. The first ...

متن کامل

Possessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction

This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...

متن کامل

Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell

In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters,   complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...

متن کامل

MHD Boundary Layer Flow of a Nanofluid over an Exponentially Permeable Stretching Sheet with radiation and heat Source/Sink

The problem of steady Magnetohydrodynamic boundary layer flow of an electrically conducting nanofluid due to an exponentially permeable stretching sheet with heat source/sink in presence of thermal radiation is numerically investigated. The effect of transverse Brownian motion and thermophoresis on heat transfer and nano particle volume fraction considered. The governing partial differential eq...

متن کامل

Analysis of Radiation Heat Transfer of a Micropolar Fluid with Variable Properties over a Stretching Sheet in the Presence of Magnetic Field

The present study deals with the analysis of the effects of radiative heat transfer of micropolar fluid flow over a porous and stretching sheet in the presence of magnetic field. The dynamic viscosity and thermal conductivity coefficient have formulated by temperature-dependent relations to obtain more exact results. The flow is supposed two-dimensional, incompressible, steady and laminar and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002